Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
BMJ Evid Based Med ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684374

RESUMO

OBJECTIVE: To investigate the associations across genetic and lifestyle factors with lifespan. DESIGN: A longitudinal cohort study. SETTING: UK Biobank. PARTICIPANTS: 353 742 adults of European ancestry, who were recruited from 2006 to 2010 and were followed up until 2021. EXPOSURES: A polygenic risk score for lifespan with long (highest quintile) risk categories and a weighted healthy lifestyle score, including no current smoking, moderate alcohol consumption, regular physical activity, healthy body shape, adequate sleep duration, and a healthy diet, categorised into favourable, intermediate, and unfavourable lifestyles. MAIN OUTCOME MEASURES: Lifespan defined as the date of death or the censor date minus the date of birth. RESULTS: Of the included 353 742 participants of European ancestry with a median follow-up of 12.86 years, 24 239 death cases were identified. Participants were grouped into three genetically determined lifespan categories including long (20.1%), intermediate (60.1%), and short (19.8%), and into three lifestyle score categories including favourable (23.1%), intermediate (55.6%), and unfavourable (21.3%). The hazard ratio (HR) of death for individuals with a genetic predisposition to a short lifespan was 1.21 (95% CI 1.16 to 1.26) compared to those with a genetic predisposition to a long lifespan. The HR of death for individuals in the unfavourable lifestyle category was 1.78 (95% CI 1.71 to 1.85), compared with those in the favourable lifestyle category. Participants with a genetic predisposition to a short lifespan and an unfavourable lifestyle had 2.04 times (95% CI 1.87 to 2.22) higher rates of death compared with those with a genetic predisposition to a long lifespan and a favourable lifestyle. No multiplicative interaction was detected between the polygenic risk score of lifespan and the weighted healthy lifestyle score (p=0.10). The optimal combination of healthy lifestyles, including never smoking, regular physical activity, adequate sleep duration, and a healthy diet, was derived to decrease risk of premature death (death before 75 years). CONCLUSION: Genetic and lifestyle factors were independently associated with lifespan. Adherence to healthy lifestyles could largely attenuate the genetic risk of a shorter lifespan or premature death. The optimal combination of healthy lifestyles could convey better benefits for a longer lifespan, regardless of genetic background.

2.
Nat Genet ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689001

RESUMO

Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.

3.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38149987

RESUMO

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Assuntos
Galactose , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Imunoglobulina G/genética , Polissacarídeos/metabolismo
4.
Int J Popul Data Sci ; 8(1): 2121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670955

RESUMO

Introduction: The purpose of VIKING II is to create an observational cohort of volunteers with ancestry from the Northern Isles of Scotland, primarily for identifying genetic variants influencing disease. The new online protocol is separate to, but follows on from, earlier genetic epidemiological clinic-based studies in the isolated populations of Orkney and Shetland. These populations are favourable for the study of rarer genetic variants due to genetic drift, the large number of relatives, and availability of pedigree information. They are known to be genetically distinct from mainland British populations. Methods and analysis: Online methods are being used to recruit ~4,000 people who have Northern Isles ancestry, living anywhere in the world. The option for participants to have actionable genetic results returned is offered. Consent will be taken electronically. Data will be collected at baseline through an online questionnaire and longitudinally through linkage to NHS data in the electronic health record. The questionnaire collects a variety of phenotypes including personal and family health. DNA will be extracted from saliva samples then genome-wide genotyped and exome sequenced. VIKING II aims to capitalise on the special features of the Northern Isles populations to create a research cohort that will facilitate the analysis of genetic variants associated with a broad range of traits and disease endpoints, including otherwise rare variants that have drifted to high frequency in these populations. Ethics and dissemination: The South East Scotland Research Ethics Committee gave the study a favourable opinion. VIKING II is sponsored by the University of Edinburgh and NHS Lothian. Summary research findings will be disseminated to participants and funding bodies, presented at conferences and reported in peer-reviewed publications. Article summary: Strengths and limitations of this studyDetailed data and biological sample collection of research volunteers with unique ancestry.Consent for access to routinely collected clinical EHR data and for future re-contact, providing a longitudinal component.Optional consent for return of actionable genetic results.~4,000 participants is a relatively small number for certain types of genetic analyses, so the cohort is underpowered on its own, in some study designs.Resources to maintain the cohort, and to store data and DNA samples, are significant, with sustainability dependent on infrastructure support and funding.


Assuntos
Instituições de Assistência Ambulatorial , Registros Eletrônicos de Saúde , Comitês de Ética em Pesquisa , Exoma , Saúde da Família , Humanos
6.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563310

RESUMO

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Esclerose Múltipla , Humanos , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Locos de Características Quantitativas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Inflamação/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único
7.
Clin Proteomics ; 20(1): 31, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550624

RESUMO

BACKGROUND: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. METHODS: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. RESULTS: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). CONCLUSION: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.

8.
Commun Biol ; 6(1): 691, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402774

RESUMO

Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of key genes in bone biology, particularly to intramembranous ossification, not captured at other skeletal sites. We perform a genome-wide association meta-analysis (n ~ 43,800) of SK-BMD, identifying 59 loci, collectively explaining 12.5% of the trait variance. Association signals cluster within gene-sets involved in skeletal development and osteoporosis. Among the four novel loci (ZIC1, PRKAR1A, AZIN1/ATP6V1C1, GLRX3), there are factors implicated in intramembranous ossification and as we show, inherent to craniosynostosis processes. Functional follow-up in zebrafish confirms the importance of ZIC1 on cranial suture patterning. Likewise, we observe abnormal cranial bone initiation that culminates in ectopic sutures and reduced BMD in mosaic atp6v1c1 knockouts. Mosaic prkar1a knockouts present asymmetric bone growth and, conversely, elevated BMD. In light of this evidence linking SK-BMD loci to craniofacial abnormalities, our study provides new insight into the pathophysiology, diagnosis and treatment of skeletal diseases.


Assuntos
Densidade Óssea , Craniossinostoses , Animais , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Peixe-Zebra/genética , Crânio , Craniossinostoses/genética , Fatores de Transcrição/genética
10.
Int J Epidemiol ; 52(5): 1579-1591, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295953

RESUMO

BACKGROUND: Previous Mendelian randomization (MR) studies using population samples (population MR) have provided evidence for beneficial effects of educational attainment on health outcomes in adulthood. However, estimates from these studies may have been susceptible to bias from population stratification, assortative mating and indirect genetic effects due to unadjusted parental genotypes. MR using genetic association estimates derived from within-sibship models (within-sibship MR) can avoid these potential biases because genetic differences between siblings are due to random segregation at meiosis. METHODS: Applying both population and within-sibship MR, we estimated the effects of genetic liability to educational attainment on body mass index (BMI), cigarette smoking, systolic blood pressure (SBP) and all-cause mortality. MR analyses used individual-level data on 72 932 siblings from UK Biobank and the Norwegian HUNT study, and summary-level data from a within-sibship Genome-wide Association Study including >140 000 individuals. RESULTS: Both population and within-sibship MR estimates provided evidence that educational attainment decreased BMI, cigarette smoking and SBP. Genetic variant-outcome associations attenuated in the within-sibship model, but genetic variant-educational attainment associations also attenuated to a similar extent. Thus, within-sibship and population MR estimates were largely consistent. The within-sibship MR estimate of education on mortality was imprecise but consistent with a putative effect. CONCLUSIONS: These results provide evidence of beneficial individual-level effects of education (or liability to education) on adulthood health, independently of potential demographic and family-level confounders.


Assuntos
Sucesso Acadêmico , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , Escolaridade , Polimorfismo de Nucleotídeo Único , Avaliação de Resultados em Cuidados de Saúde
11.
Eur J Prev Cardiol ; 30(12): 1255-1262, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172216

RESUMO

AIMS: To identify a group of metabolites associated with incident cardiovascular disease (CVD) in people with type 2 diabetes and assess its predictive performance over-and-above a current CVD risk score (QRISK3). METHODS AND RESULTS: A panel of 228 serum metabolites was measured at baseline in 1066 individuals with type 2 diabetes (Edinburgh Type 2 Diabetes Study) who were then followed up for CVD over the subsequent 10 years. We applied 100 repeats of Cox least absolute shrinkage and selection operator to select metabolites with frequency >90% as components for a metabolites-based risk score (MRS). The predictive performance of the MRS was assessed in relation to a reference model that was based on QRISK3 plus prevalent CVD and statin use at baseline. Of 1021 available individuals, 255 (25.0%) developed CVD (median follow-up: 10.6 years). Twelve metabolites relating to fluid balance, ketone bodies, amino acids, fatty acids, glycolysis, and lipoproteins were selected to construct the MRS that showed positive association with 10-year cardiovascular risk following adjustment for traditional risk factors [hazard ratio (HR) 2.67; 95% confidence interval (CI) 1.96, 3.64]. The c-statistic was 0.709 (95%CI 0.679, 0.739) for the reference model alone, increasing slightly to 0.728 (95%CI 0.700, 0.757) following addition of the MRS. Compared with the reference model, the net reclassification index and integrated discrimination index for the reference model plus the MRS were 0.362 (95%CI 0.179, 0.506) and 0.041 (95%CI 0.020, 0.071), respectively. CONCLUSION: Metabolomics data might improve predictive performance of current CVD risk scores based on traditional risk factors in people with type 2 diabetes. External validation is warranted to assess the generalizability of improved CVD risk prediction using the MRS.


This study looked at whether combining a group of new markers found in the blood (called metabolites) with traditional risk factors (such as high blood pressure and obesity) could more accurately predict how likely people with type 2 diabetes are to develop cardiovascular diseases in the next 10 years. Key findingsTwelve metabolites (including amino acids and lipids) showed strong association with 10-year cardiovascular risk in people with type 2 diabetes, and a metabolites-based risk score (MRS) was created by integrating these metabolites.Combining the MRS with traditional risk factors was better at predicting the risk of a person with T2D for developing cardiovascular diseases within the next 10 years than using traditional risk factors alone.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Fatores de Risco de Doenças Cardíacas , Metabolômica , Medição de Risco/métodos , Valor Preditivo dos Testes
12.
Nature ; 617(7962): 764-768, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198478

RESUMO

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Assuntos
COVID-19 , Estado Terminal , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Técnicas de Genotipagem , Monócitos/metabolismo , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Transcriptoma , Sequenciamento Completo do Genoma
13.
Res Sq ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034613

RESUMO

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioral traits and the disease etiology of neuropsychiatric disorders. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-related proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-related traits such as sleeping, smoking, feelings, alcohol intake, mental health, and psychiatric disorders. Integrating with established drug information, we validated 13 out of 13 matched combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets. This consortium effort provides a large-scale proteogenomic resource for biomedical research on human behaviors and other neuro-related phenotypes.

14.
Nature ; 616(7955): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991119

RESUMO

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Assuntos
Doença da Artéria Coronariana , Multiômica , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Metabolômica/métodos , Fenótipo , Proteômica/métodos , Aprendizado de Máquina , Negro ou Afro-Americano/genética , Asiático/genética , População Europeia/genética , Reino Unido , Conjuntos de Dados como Assunto , Internet , Reprodutibilidade dos Testes , Estudos de Coortes , Proteoma/análise , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Dados Factuais
15.
Commun Biol ; 6(1): 312, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959410

RESUMO

Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions.


Assuntos
Imunoglobulina G , Processamento de Proteína Pós-Traducional , Transferrina , Humanos , Glicosilação , Ensaios de Triagem em Larga Escala , Imunoglobulina G/sangue , Imunoglobulina G/química , Transferrina/química , Transferrina/isolamento & purificação , Polissacarídeos/análise
16.
Eur J Hum Genet ; 31(5): 588-595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36927983

RESUMO

We multiply ascertained the BRCA1 pathogenic missense variant c.5207T > C; p.Val1736Ala (V1736A) in clinical investigation of breast and ovarian cancer families from Orkney in the Northern Isles of Scotland, UK. We sought to investigate the frequency and clinical relevance of this variant in those of Orcadian ancestry as an exemplar of the value of population cohorts in clinical care, especially in isolated populations. Oral history and birth, marriage and death registrations indicated genealogical linkage of the clinical cases to ancestors from the Isle of Westray, Orkney. Further clinical cases were identified through targeted testing for V1736A in women of Orcadian ancestry attending National Health Service (NHS) genetic clinics for breast and ovarian cancer family risk assessments. The variant segregates with female breast and ovarian cancer in clinically ascertained cases. Separately, exome sequence data from 2088 volunteer participants with three or more Orcadian grandparents, in the ORCADES research cohort, was interrogated to estimate the population prevalence of V1736A in Orcadians. The effects of the variant were assessed using Electronic Health Record (EHR) linkage. Twenty out of 2088 ORCADES research volunteers (~1%) carry V1736A, with a common haplotype around the variant. This allele frequency is ~480-fold higher than in UK Biobank participants. Cost-effectiveness of population screening for BRCA1 founder pathogenic variants has been demonstrated at a carrier frequency below the ~1% observed here. Thus we suggest that Orcadian women should be offered testing for the BRCA1 V1736A founder pathogenic variant, starting with those with known Westray ancestry.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Medicina Estatal , Proteína BRCA1/genética , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Frequência do Gene , Haplótipos , Escócia/epidemiologia , Neoplasias da Mama/genética , Predisposição Genética para Doença , Proteína BRCA2/genética , Testes Genéticos
17.
medRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824751

RESUMO

Understanding the genetic basis of neuro-related proteins is essential for dissecting the disease etiology of neuropsychiatric disorders and other complex traits and diseases. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-reiated proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-reiated traits as well as complex diseases such as hypertension, high cholesterol, immune-related disorders, and psychiatric disorders. Integrating with established drug information, we validated 13 combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets for diseases and comorbidities. This consortium effort provides a large-scale proteogenomic resource for biomedical research.

18.
HGG Adv ; 4(2): 100178, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36798092

RESUMO

The use of genetic and genomic technology to infer ancestry is commonplace in a variety of contexts, particularly in biomedical research and for direct-to-consumer genetic testing. In 2013 and 2015, two roundtables engaged a diverse group of stakeholders toward the development of guidelines for inferring genetic ancestry in academia and industry. This report shares the stakeholder groups' work and provides an analysis of, commentary on, and views from the groundbreaking and sustained dialogue. We describe the engagement processes and the stakeholder groups' resulting statements and proposed guidelines. The guidelines focus on five key areas: application of genetic ancestry inference, assumptions and confidence/laboratory and statistical methods, terminology and population identifiers, impact on individuals and groups, and communication or translation of genetic ancestry inferences. We delineate the terms and limitations of the guidelines and discuss their critical role in advancing the development and implementation of best practices for inferring genetic ancestry and reporting the results. These efforts should inform both governmental regulation and self-regulation.


Assuntos
Pesquisa Biomédica , Humanos , Genômica , Comunicação
19.
BMC Infect Dis ; 23(1): 65, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737699

RESUMO

BACKGROUND: Epstein Barr virus (EBV) infects ~ 95% of the population worldwide and is known to cause adverse health outcomes such as Hodgkin's, non-Hodgkin's lymphomas, and multiple sclerosis. There is substantial interest and investment in developing infection-preventing vaccines for EBV. To effectively deploy such vaccines, it is vital that we understand the risk factors for infection. Why particular individuals do not become infected is currently unknown. The current literature, describes complex, often conflicting webs of intersecting factors-sociodemographic, clinical, genetic, environmental-, rendering causality difficult to decipher. We aimed to use Mendelian randomization (MR) to overcome the issues posed by confounding and reverse causality to determine the causal risk factors for the acquisition of EBV. METHODS: We mapped the complex evidence from the literature prior to this study factors associated with EBV serostatus (as a proxy for infection) into a causal diagram to determine putative risk factors for our study. Using data from the UK Biobank of 8422 individuals genomically deemed to be of white British ancestry between the ages of 40 and 69 at recruitment between the years 2006 and 2010, we performed a genome wide association study (GWAS) of EBV serostatus, followed by a Two Sample MR to determine which putative risk factors were causal. RESULTS: Our GWAS identified two novel loci associated with EBV serostatus. In MR analyses, we confirmed shorter time in education, an increase in number of sexual partners, and a lower age of smoking commencement, to be causal risk factors for EBV serostatus. CONCLUSIONS: Given the current interest and likelihood of a future EBV vaccine, these factors can inform vaccine development and deployment strategies by completing the puzzle of causality. Knowing these risk factors allows identification of those most likely to acquire EBV, giving insight into what age to vaccinate and who to prioritise when a vaccine is introduced.


Assuntos
Infecções por Vírus Epstein-Barr , Vacinas , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/prevenção & controle , Infecções por Vírus Epstein-Barr/epidemiologia , Estudo de Associação Genômica Ampla , Herpesvirus Humano 4/genética , Vacinação , Análise da Randomização Mendeliana
20.
Nat Commun ; 14(1): 307, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658113

RESUMO

Obesity remains an unmet global health burden. Detrimental anatomical distribution of body fat is a major driver of obesity-mediated mortality risk and is demonstrably heritable. However, our understanding of the full genetic contribution to human adiposity is incomplete, as few studies measure adiposity directly. To address this, we impute whole-body imaging adiposity phenotypes in UK Biobank from the 4,366 directly measured participants onto the rest of the cohort, greatly increasing our discovery power. Using these imputed phenotypes in 392,535 participants yielded hundreds of genome-wide significant associations, six of which replicate in independent cohorts. The leading causal gene candidate, ADAMTS14, is further investigated in a mouse knockout model. Concordant with the human association data, the Adamts14-/- mice exhibit reduced adiposity and weight-gain under obesogenic conditions, alongside an improved metabolic rate and health. Thus, we show that phenotypic imputation at scale offers deeper biological insights into the genetics of human adiposity that could lead to therapeutic targets.


Assuntos
Proteínas ADAMTS , Adiposidade , Obesidade , Animais , Humanos , Camundongos , Proteínas ADAMTS/genética , Adiposidade/genética , Índice de Massa Corporal , Genoma , Obesidade/genética , Fenótipo , Aumento de Peso/genética , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA